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1. Introduction

ABSTRACT

We investigate here the agglomeration of spatial clubs in an efficient allocation of a club economy. The
literature on agglomeration has focused largely on a primary agglomeration caused by direct attraction
forces. We concentrate mainly on secondary and tertiary agglomerations caused by a primary agglomer-
ation. Initially, scale economies in the provision of club goods (CGs) lead each CG to agglomerate in facil-
ities of its club. This primary agglomeration causes a secondary concentration of population around these
facilities, which in turn brings about a tertiary agglomeration of facilities of different clubs into centers in
the midst of population concentration. The agglomeration of facilities occurs only if a secondary concen-
tration of population takes place. We analyze in detail two specific patterns of agglomeration. One is the
central location pattern in which the facilities of all clubs agglomerate perfectly in the middle of the com-
plex. The second is a triple-centered complex in which the center in the middle of the complex consists of
perfectly agglomerated facilities of different clubs, each with a single facility per complex. The remaining
two centers also consist of facilities of different clubs, but clubs in these centers each have two facilities
per complex, one in each center. Each of these two centers is located between a boundary and the middle
of the complex closer to the middle of the complex than to the boundary. The facilities in these two cen-
ters form condensed clusters of facilities that may contain residential land in between the facilities. We
then show that these agglomeration patterns also characterize agglomerations in general. The literature
maintains that an efficiently behaving municipality increases its tax-base. This implies that it is in the
municipality’s interest to achieve efficiency. The best way for a local government to achieve this desired
efficiency is by partially intervening in market operations in order to internalize local externalities. Such
an intervention should be limited to providing the city’s infrastructure, to taxing only residential land
rents and clubs’ profits, to subsidizing the basic industry of the city, and to partially regulating land uses.
Consequently, if the local governments of all complexes behave according to the above, the decentraliza-
tion of the efficient allocation of the club economy would be attained.

© 2010 Elsevier Inc. All rights reserved.

of households who jointly consume the CG provided by the facility
and are distinct from patrons of other facilities of the same club. In

The purpose of this paper is threefold: the first is to introduce
an optimization model of an economy with spatial clubs, the sec-
ond is to identify those forces in the economy that lead to the
agglomeration of facilities of various clubs into multi-club centers,
and the last is to characterize the solution in general and these cen-
ters in particular. To facilitate the exposition, we first introduce
some terminology related to the theory of spatial clubs. A spatial
club consists of facilities spread throughout the economy, each of
which contains a concentration of the good provided by the club.
A club-good (CG) is a good or service provided by each of the club
facilities to their patrons. The provision of a CG by its club’s facility
is subject to scale economies. The patrons of a facility are a group
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the formulation of the model and with the literature review.
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order to consume a particular CG, a household has to commute to
one of the facilities of the spatial club that provides this good. The
market area of a facility is the area of residency of the facility’s
patrons.

Many local public goods are CGs as are many private con-
sumption goods and services whose provision is subject to scale
economies and therefore are provided collectively by spatial
clubs. Most clubs belong to the type of clubs to which people
commute, which include: Real-life clubs such as country clubs,
parks, museums, churches, etc. In addition, other institutions,
not necessarily known as clubs, satisfy our specifications, includ-
ing schools (e.g. see Jepsen and Montgomery (2009) who show
the importance of distance to a community college), police sta-
tions, theater and movie halls, restaurants, government offices,
courthouses, shops and stores, to name just a few. Notable among
these various clubs is the ‘production club’, in which the popula-
tion is employed. The real-life facilities of the production club
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include industrial areas and employment centers. Clubs that deli-
ver goods or services from facilities to household homes are a
second type of real-life spatial club that fulfill the model’s speci-
fications. Delivery costs play the same role in this type of club
that transportation costs played in clubs of the type to which
people commute. Examples of this type of club would be electric-
ity utilities whose facilities are transformer stations and water
utilities whose facilities are pumping stations. Another example
of a club delivering home its CG is fire-protection services where
fire fighting stations are the facilities.

Three main causes of residential and non-residential agglom-
erations are typically cited in the literature. One results from re-
ciprocal informational exchange, the second from increasing
returns to scale and the last from spatial competition (for theories
on agglomeration see Fujita and Thisse (1996, 2002) and for a re-
view of the substantial economic literature on this topic see
Rosenthal and Strange (2004)). Most of these explanations of
agglomerations are based on direct attraction forces such as the
mutual attraction of units of an industry because their activity
is enhanced when located close to each other. In this paper, the
primary agglomeration of CGs into facilities is a result of a direct
attraction between units of a CG whose provision is subject to
scale economies. Each CG agglomerates into its own facilities in
order to provide the CG to households throughout the economy.
We focus here, however, mainly on the secondary concentrations
of population around facilities and on the tertiary agglomerations
of facilities of different clubs in centers in the midst of population
concentrations.

The primary agglomeration of a CG in facilities attracts house-
holds to locate close to a facility in order to save commuting costs.
The desire to save commuting costs is offset by congestion costs
due to the limited supply of land in the proximity of the facility.
The indirect attraction and the subsequent congestion cause a sec-
ondary concentration of population around facilities, where the
density of population decreases with its distance from the facility.
In turn, the concentration of population around a facility causes
facilities of different clubs to locate in the same vicinity in order
to increase accessibility even further, thus creating tertiary
agglomerations of facilities into centers in the midst of densely
populated areas. All three stages of agglomeration, namely the
primary agglomeration of CGs, the secondary concentration of
population and the tertiary agglomeration of facilities into cen-
ters, occur simultaneously and the stages indicate the order of
causality rather than the timing. Indeed, we show that tertiary
agglomeration does not occur without a secondary concentration
of population and that secondary concentration of population
does not occur without the primary agglomeration of CGs into
facilities.!

Early urban economics models dealt mainly with secondary
concentration of households in a residential ring surrounding a

1 In real-life situations there are additional reasons that are not captured by this
model for various types of spatial clubs to operate close to each other. These reasons
include: (1) multi-purpose trips intended to save commuting costs, i.e., one trip to
two or more different club facilities; (2) joint services to users of different facilities
that are subject to scale economies, for instance: joint infrastructures such as parking
lots, rest areas, rest rooms, etc. (3) The advantages in (1) and (2) require that patrons
should spend a relatively long time at each trip, which, in turn, implies that different
R&R facilities should be included in the site to encourage extended stays. The above
three points may explain the existence of large suburban malls that our model does
not explain. (4) Clubs operating during different hours may use the same infrastruc-
ture at different times. For instance, employment centers operating in the central
business district (CBD) during week days at the daytime while entertainment clubs
like nightclubs, restaurants, bars etc., operate weekends and during the night.
Therefore, both may use the same roads and parking space at different times of the
day or the week. This may explain why an ‘Old City’ is located in the midst of a CBD in
some cities, or why a wedding hall exists in the midst of industrial parks. These effects
cannot be investigated within the framework of our model.

predetermined central business district (CBD), where all employ-
ment takes place. The concentration of industry in the CBD was
exogenously assumed, the rationale being that the industry must
be located in proximity to a seaport, train depot or other shipping
facility through which the city’s basic products can be exported to
the rest of the world (see Muth (1969)). Mills (1967) and Mills
and Hamilton (1989) argued that the agglomeration of industry
in a CBD is the result of the industry being subject to scale econ-
omies but they still assumed exogenous agglomeration. Instead of
focusing on an endogenous CBD, Mills and his contemporaries
concentrated on the residential ring. Henderson (1974) was the
first to introduce a model in which an industry agglomerates
endogenously into a CBD, however, he still imposed a single
employment location surrounded by a residential ring on the
model. In subsequent studies, Ogawa and Fujita (1980), Fujita
and Ogawa (1982), and Fujita (1989) constructed simulation mod-
els of the agglomeration of an industry based on direct attraction
effects. These simulations resulted in a variety of primary agglom-
erations. However, no secondary concentration of population and
hence no tertiary agglomerations were possible, since a uniform
density of population was assumed everywhere. The new eco-
nomic geography model by Fujita et al. (1999) presented a formal
study on the evolution of the central place systems in which con-
centration of workers and agglomeration of multiple types of
industries play a central role. Recently, Lucas and Rosi-Hansberg
(2002) incorporated both direct and indirect agglomeration en-
gines into a single simulation model of an agglomerating industry
and population/workers. But, contrary to our model in which
facilities of different clubs agglomerate into centers, in their mod-
el only one type of facility exists and therefore no tertiary agglom-
eration can occur.

The above models do not address the endogenous tertiary
agglomeration of different primary agglomerations into centers
in the midst of population concentrations as described in this pa-
per because they either have only a single industry which can
agglomerate or they do not have secondary agglomerations. Some
studies (e.g., Fujita and Thisse (1986), Thisse and Wildasin (1992),
Papageorgiou and Pines (1999) and papers surveyed by Berliant
and ten Raa (1994)) do investigate agglomeration of different facil-
ities but they impose a uniform distribution of population on the
model. We show here that without a secondary concentration of
population an agglomeration of facilities is ineffective.> The
agglomerations of facilities in the above studies are due to either
the ‘edge-of-economy effect,’ to indivisibility and/or to random tech-
nological effects. Therefore, to avoid confounding our own results,
we assume herein an economy without edges, i.e., our economy’s
territory is ring-shaped and fully occupied. In addition, we investi-
gate only cases of full divisibility.

On this ring-shaped area of homogeneous land, we construct a
model of an economy with spatial clubs using the conceptual
framework of Hochman et al. (1995).3 In this economy there are
many types of essential collective goods that require a wide variety
of spatial clubs that a household must visit in order to consume the
goods. The concentration of each CG into a separate facility results
from scale economies in the provision of the good. Without such
scale economies, each household would consume the CG privately
in its own premises to avoid commuting costs. Since the direct
attraction forces between units of a CG caused by scale economies
are assumed to be internal to the facility, they are reflected only in

2 An agglomeration is ‘ineffective’ when in addition to the original allocation with
agglomeration there is an equivalent allocation which solves the model that has no
agglomeration (see Section 5.1).

3 While Hochman et al. (1995) focused on the finance of services rendered by the
facilities, they disregarded spatial aspects and questions of agglomeration of facilities,
on which the present paper focuses.
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the size of the facilities and not in their number. Thus, at any given
site no more than one facility per club exists. Then we demonstrate
that the population density is never uniform in a first-best allocation
and that there are always areas in the economy in which population
and facilities agglomerate.

Our model’s results specify that in an optimal allocation the
economy’s territory is partitioned into identical complexes, where
a complex is the smallest autonomous area in the economy, i.e.,
the smallest area in which all residents, and they alone, consume
all the types of CGs in facilities located inside the complex. Thus,
nobody commutes in or out of a complex, which, in a sense, ren-
ders the complex the ideal municipality. Furthermore, we charac-
terize an allocation by characterizing its representative complex.

A complex configuration is a vector of integers whose greatest
common divisor (GCD) is one.* Each entry in the vector specifies
the number of facilities of a club in the complex. Thus, the first entry
in the vector is the number of facilities of club one in a complex, the
second entry is the number of facilities of club two and so forth. The
entries of a complex configuration are integer variables that have to
be solved endogenously. However, being integer variables makes
them hard to solve by using regular analysis. We therefore first solve
the model for a given constant complex configuration to which we
refer as a local optimum. In a global optimum the complex configu-
ration is also chosen optimally. We show that in the optimum there
is always a solution with a symmetric complex.

Next, we characterize the spatial pattern of two local optimum
solutions of two specific complex configurations.® In the first con-
figuration, each club has a single facility per complex. With this con-
figuration, the model results in monocentric complexes (cities) in
which facilities of all clubs agglomerate perfectly in the center of
the complex and share the whole complex as a common market
area. ® The population density and the housing price function in each
of the complexes of this configuration increase with proximity to the
complex’s center, where both functions reach their peak. In addition,
we provide specifications of a functions’ domain in which this solu-
tion is the unique global (over all possible configurations) optimum.

The second configuration that we investigate has two groups of
clubs. Each club in the first group has a single facility per complex
and each club in the second group has two facilities per complex. In
the optimal allocation, all the facilities of clubs of the first group
agglomerate perfectly in the middle of each complex with their
market area consisting of the whole complex. The facilities of clubs
of the second group are divided into two clusters, each of which
contains one facility of each club of the second group. The complex
area is divided in the middle into two equal market areas, one for
each cluster of facilities of the second group of clubs. One cluster is
located in the second quarter of the complex’s area and the other in
the third quarter. Thus, the clusters of the second group are closer
to the middle of the complex than to its boundaries. In other
words, these clusters gravitate towards the center of the complex.
The facilities in a cluster are close to each other but residential
areas may exist between the facilities in the cluster, depending
on whether or not the transportation cost functions of the different
clubs with two facilities per complex (DF hereafter) are propor-
tional to each other. Facilities with proportional transportation
costs share the same facility location. Thus, while clubs of the sec-
ond group do not necessarily agglomerate perfectly, they are
drawn to each other and form clusters, which as a whole are drawn
towards the center of the complex. The complex is symmetric

4 The GCD of a vector of integers is the largest integer that divides all the entries of
the vector and leaving each of them still an integer. When the GCD of a configuration
is one the configuration consists of disjoint integers and is termed basic.

5 These complex configurations are: (1,...,1) and (1,...,1, 2,...,2).

6 By perfect agglomeration we mean that facilities are adjacent to each other with
no residential area between them.

around its middle with a higher density of population between
the clusters of the DF clubs and the center of the complex than be-
tween the clusters and the boundaries. We then generalize part of
the above results for complexes in general and show that in our
model these two types of agglomerations epitomize agglomera-
tions of facilities in general.

Contrary to non-spatial clubs (e.g., Berglas (1976), Scotchmer
and Wooders (1987); see also the survey by Scotchmer (2002) of
spatial and non-spatial clubs and Waldfogel (2008)), our optimal
solution cannot be attained by a laissez faire allocation. In a laissez
faire situation club owners are free to operate without restrictions,
so they engage in spatial monopolistic competition, which in gen-
eral does not yield an optimal allocation (e.g., Beckmann, 1999). In
Hochman et al. (1995) it is claimed that to attain the efficient allo-
cation, the local government has to provide by itself the club goods
to the general population. Here we argue that there is a decentral-
ization method coupled with regulations with which the optimum
may be approached with only a limited government intervention.
In such a decentralization, households pay facility operators for
the use of their CG and the local government taxes away the oper-
ators’ profits and determines the location of the facilities.

Five sections follow this introduction. Section 2 describes the
setup of the model. The necessary conditions for Pareto optimum
are described in Section 3 and the decentralization of the optimal
allocation is depicted in Section 4. Section 5 contains our main re-
sults. In Section 5.1, we present general characteristics of the solu-
tion. In Section 5.2, we describe a perfect agglomeration and in
Section 5.3, an imperfect agglomeration. We generalize the results
in Section 5.4 and in Section 5.5, we elaborate on how to obtain
global optima with global configurations. In Section 6, we conclude
with a short summary and a few pointers for future research.

2. The model setup

The country’s geography is designated by a ring of unit width,
with a circle running through the middle of the ring to serve as the
ring’s x-axis (see Fig. 1). We assume the axis-circle’s circumference
is . Note that the total area of the ring in this case is also .#. An arbi-
trary point on the ring’s axis is referred to as the origin. The location
of any point on the axis of the ring is uniquely defined by its distance
x from the origin in a clockwise direction (henceforth also the posi-
tive or the right direction). All points on the line segment perpendic-

Fig. 1. A ring-shaped economy.
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ular to the axis are designated as the same location because travel
between these points involves no costs. The country accommodates
A" households (each time we introduce a concept it is italicized)
which are identical to each other in all respects. We assume that
these households are free to choose their residential location in
the economy. Hence, all households must have the same utility level
everywhere; otherwise they will migrate to the location with the
higher utility. Each individual household derives utility from the
consumption of a composite good, Z, and from housing, H, both of
which the household consumes at its location of residency.

The household also derives utility from I types of collective goods
(CGs hereafter), where G, is the quantity of the ith CG the house-
hold consumes, i = 1,.. .1, according to a well-behaved utility func-
tion, u(Z,H,Gy,...,G;). All goods are essential, and each CG is
consumed at a special facility to which the household has to travel.
Each individual is endowed with Y units of the composite good
which can be used for private consumption and for the production
of housing, CGs and transportation.

The economy contains I different clubs, one for each type of CG.
A club of type i supplies units of the ith CG through its m; facilities
which are located throughout the economy. Each facility is identi-
fied by i, j, wherej € (1,...,m;) is the index of the specific facility of
club i, and i e (1,...,I) refers to the club type. Facility i, j, whose
location is designated by x;,;, provides Gj units of the ith CG to
Nj; patrons, i.e., to individual households consuming the ith CG in
facility ij and residing within its market area, where a market area
of a facility is a segment of the x-axis in which all and only the
facility’s patrons live.” We also make the simplifying assumption
that a facility does not occupy land and since, in practice, club facil-
ities occupy only a small fraction of the total land available com-
pared to residential land, the distortion caused by this assumption
is negligible when considering the simplification involved. We repre-
sent facility ij’s market area by the interval [X;2j_1,%;2;+1]. The union
of the market areas of the m; facilities supplying the ith CG coincides
with the residential area [0,L] where L, the boundary of the residen-
tial area, fulfills the condition that L < #.8 Accordingly, the spatial
characteristics of each facility ij are fully specified by the following
triplet of nodes (see Fig. 2):

Xi2j—1 = the left boundary of the ijth facility’s market area and
the right boundary of the i(j — 1)th facility’s market area,

X;; = the location of the ijth facility, and

X;2j+1 = the right boundary of the ijth facility’s market area and
the left boundary of the i(j + 1)th facility’s market area.

Since all goods are essential, each resident must consume all
types of club goods. Hence, the extreme boundaries must fulfill,
Xizm1 =L, and x;1 =0, vi.? We define the clubs’ configuration as
the vector of integers (my,...,m;), where m; is the number of facili-
ties of type i in the economy. Thus, the clubs’ configuration is a vec-
tor of I integer variables. To facilitate the analysis, we sort all the
possible configurations into classes, where each class is represented
by a vector (my,...,m;) ((m;) for brevity) of I disjoint integers whose
greatest common divisor (GCD henceforth) is one, i.e., for every

7 By this we assume that a market area of a facility is a connected segment. In what
follows we prove that, indeed, the market area of a facility of a club is a connected
segment, provided that ti(x), the club’s commuting cost function, is linear in x (see
Lemma 3). In the case of non-linear transportation costs, connected market areas
remain an assumption.

8 By this, we make the assumption that the occupied area as well as the unoccupied
area are connected and that the later is concentrated at the end of the economy
between L and the origin, 0.

9 In this model, the focus is on the case in which all available land is occupied, i.e.,
L =, which implies that 0 = X;; = X; 2,11 = L = &, Vi. Therefore, calculations with
the location variable x are modulo % (i.e. & + x = x.). For example, Vi, m; and an
arbitrary y, 0 <y < £, X1 +y = Xizm1 +Y =L +y = 4.

Xis
X ;
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X X
X 22 [ ] el
2! | Xz,s
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X X X
X 32 1 234 [ | 3.6
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0 X35 X35

F——l .

Market area facility

Fig. 2. Facility locations and market areas in a complex with a basic configuration
(1,2,3).

J = 2, at least one of the quotients m;/4, i=1,...,], is not an integer.
We term the configuration with GCD =1 a basic configuration. From
here on, we designate a clubs’ configuration (m;) by k(m;), where
(my) is the basic configuration designating the class, and the GCD k
is an additional integer-variable to be solved.

Figure 2 depicts the layout of a complex with a basic configura-
tion of (1,2,3). For expositional purposes, we mark the nodes of
each club on a different horizontal axis. Actually, they are all jointly
located on the x-axis.

Next, we consider a model of an economy with population ./,
available land # and a clubs’ configuration k(m;). A complex in
this economy is the optimal solution of a model whose popula-
tion size is % and its available land is % where L < ¢ is the occu-
pied land in the original economy. The clubs’ configuration of the
complex model is the basic (m;) and it has the same functions
(costs, utility) as the original model. In the solution of the com-
plex, the GCD, k, is 1, the configuration is the basic configuration
(m;) and all its land, } & is occupied by %N households.
The optimal solution of the model with the configuration k(m;)
can now be described as k consecutive replications of the com-
plex with the basic configuration (m;). Each two consecutive
complexes are adjacent and have a joint boundary. # —-L >0
is the vacant land at the edges. The GCD k, is now an integer-var-
iable measuring the number of complexes in the economy. Thus,
by determining k and characterizing the complex, we character-
ize the solution of the general model.!° In the rest of the paper,
we use the terms basic configuration and complex configuration
interchangeably. Since L is the length (also the area) of the com-
plex and the population of the complex is N, kL=L and kN = .1".
Accordingly, L is also the coordinate of the right boundary of the
first complex (whose left boundary is the origin, 0) and the left
boundary of the second complex, if there is more than one com-
plex in the economy, and so on for all k complexes. Since all com-
plexes are identical, it is sufficient to solve only for one (the first)
complex. In addition, because all goods are essential, the bound-
aries of a complex must coincide with the boundaries of each of the
facilities of the I clubs that are farthest from the complex center.
Hence,

Xi1=0; L—Xiom1 =0, Vie{l,....J}andkL=L< 2. (1)

10 In Hochman et al. (1995) a complex is defined as the smallest autonomous area in
the economy, i.e., the smallest area in which its residents, and only them, consume
the CGs in it From the discussion so far it is clear that our complex satisfies this
definition.
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Eq. (1) implies that by assumption the origin is a boundary of all
clubs. Similarly, the relation between the complex and the overall
population must be

NJk=N=0. (2)

In order to use a CG, the household incurs travel costs of a home-
facility trip which is given by t;(Jx — X;2,«|), where the argument
of the function is the absolute value of the home-facility distance
and ji(x) is the index j of the facility of club i whose residents at x
use. The transportation cost function fulfills t/(y) > 0,t/(y) < 0, for
ally > o0."

The provision cost function, ci(Gij,Nij) (for brevity, hereafter ci(j))
is the cost to facility i, j for providing its CG, Gy, to N;j households.
The function c'(j) fulfills,

el () YrRal) iy = 2Cl)
i _ i _ 1 —
a() = oG, >0, ()= N, 20, ()= 861-2]- >0,
i <0 if Ny < Nj(Gy), i(j
T R ) YOO
ij >0 if N,’j = Nij(Gij)> ¥

where 0 < Nyj(Gj) < 0o, and Gj > 0.

3)

Thus, % is either a U- or L-shaped function of N;.'* We designate by

f
6 = & Y the congestability level of a CG, 0 < 6 < 1, when 9 = 0 the CG
is a pure LPG and when 0 = 1 the CG is a private good. The scale econ-
omies reflected in the second line of (3) are responsible for the con-
centration of club goods in facilities. Without these scale economies,
a CG would be provided to a household, like z, at home and not in
facilities where there is joint consumption of households. Each facil-
ity i, j is identified by its CG, Gy, facility location, x;,; market area,
(Xi2j-1,Xi2j+1) and the population within its market area, Nj. A club
that requires special attention is the ‘production club’, which we
designate by the index i=1."* Patrons (workers) Ny;, of facility 1,/
of a production club work in the club’s facility location x; ;, reside
in the facility’s market area and, together with an input of Gy; units
of composite good, produce a net positive output (—c'(Gy;,Nq;) > 0) of
the composite good. Thus, [Gy; — cl(GU,NU)] is the gross output of
the jth facility of club 1 and as such, is its production function. The
general characteristics of a club’s cost functions specified in (3) need
some modification and interpretation in the case of a production
club. Thus, instead of (3) we assume,

! The assumption t'(y) < 0 is accepted in the urban economics literature. The main
justification of the assumption are travel congestion costs. The number of travelers on
the road increase when the distance from the facility reduces, therefore, congestion
costs closer to the facility are higher than farther away from it. Congestion costs are
even higher when facilities are located in centers. A second reason for t'(y) < 0 is the
fixed costs at the end and beginning of a trip, i.e., the value of walking, waiting and
parking time. The assumption of a non-positive second derivative of the travel cost
function ensures that the bid housing price function and with it the housing price
function are concave (see Appendix A). Note, however, that aggregate travel costs to a
facility are a convex function of the size of a facility’s patronage.

2 Note that ch(j) = 0 implies that Gj; is a pure public good with an L-shaped average
cost function. Then c(G,N) = ¢/(G, 1) for all values of N and G. When G is a private good
distributed equally to each of the N residents, ¢/(G,N) = Nc((G,1). Accordingly, as long
as ¢(G,N) fulfils ¢/(G,1) < c/(G,N) < Nc((G,1),G behaves as a congestable local public
good, i.e. 0 < 6<1.

13 For simplicity, we assume that all clubs other than the ‘production club’ do not
employ labor. Accordingly, these non-production clubs consist only of composite
good and patrons/customers. The production club produces the composite good by
using labor. It should be noted that no more than one employment club can exist in
the model because of the assumption that every household must visit each club in the
economy while workers cannot work in more than one workplace. In addition, we
assume away in our model important aspects like pollution externalities that Arnott
et al. (2008) has showen to matter and preference externalities that Waldfogel (2008)
considers important.

<0, if Gy < Gi(Ny)) =
c10) VTV where % >0
>0, if G = Gi(Ny)) 1j
c'(Gj,0) =0, c3(j) <0, VGyj,Ny; @
C}l(j) > 07 C%z(j) = 07 and
o (1Cu=< UGy Ny 2 (1Gu=eh
( i > > 0; < My ) <0,for 1>=1,
92 0.2

Accordingly, for Ny;>0, the function c!(Gy;N;;) obtains negative
values and is U- shaped as a function of Gyj, while the average out-
GU—C] (Gyj,Nyj)

put, ( Ny
tionally. This last property is a reflection of scale economies in
production.'® We also assume in the production club case that the
marginal utility of Gy; is zero, i.e., du/0G, = 0, which means that G;;
is a production factor that does not affect the household’s well-
being.

We adopt here the assumption accepted in urban economics lit-
erature of a non-atomic distribution of population over space.
Thus, a household in our model is identified by its residence at x.
In addition, we confine ourselves to allocations in which all house-
holds are identical in the sense that they all have the same utility
function, skills, and initial endowment and they all face the same
transportation and provision cost structure. In that case, free
choice of the location of residency implies an equal utility level
for everyone everywhere, namely:

), is increasing when both inputs increase propor-

U- u(Z(x),H(x), G- G,_j,m) <0, Vxel0kL, (5)

where U is the common utility level for all households in the econ-
omy and ji(x) is the index of the facility providing the ith CG to
households living at x. We designate by u;(x) the derivative of
u(Zx),Hx),Gy 5, +Gyjin) With respect to the ith variable of the
utility function as specified in (5), e.g., u»(x) = du(z(x)'H(X),;‘(f;”"'"'G

We now turn to housing construction. Let H*(x) be the amount
of housing constructed per unit land at x. H*(x) is produced by land
and the composite good. The amount of composite good used in
the production per unit of land at x is c,(H*(x)), with c},(H®) >0
and cj(H®) > 0. We term cy(H’) as the housing cost function.The
material balance for housing implies

n(x)H(x) — H(x) <0, (6)

where n(x) is the population density function.
The club membership constraint can be written as:

15 (x))

Xi2j+1 .. 16{1,1}
Ni — n(x)dx <0, Vl,;{. ' . 7
! Xi2j-1 ) ! Je {lv"'vmi} 7
and
m;
A=Y "Nij=0 Vie{l,... I} (8)
=1

The housing price function, pp(x), is defined as:

Pr(%) € up (%) /1 (%), 9)

where the composite good Z is the numeraire. From (9) and (5) we
substitute out H(x) and Z(x) to obtain the compensated demand func-
tion for housing, namely

H(X) = hipy(), G, -+ Gy Ul (10)

1 (x)°

14 In subsequent sections, results specific to the production club are given in
footnotes.
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and the compensated demand function for the composite good, which
is

X) = 2[p(%), Gy 1 - Gy U, (11)

where py(x) together with the different CGs and the utility level, U,
are arguments in both of the above functions. Let the aggregate
expenditure function for the (representative) complex be given by
E(N,U) where

E(N,U) = /[n
o>

The three terms of the complex’s aggregate expenditure function in
(12) are the expenditures on consumption and housing production
(the first term), the provision cost of all CGs (the second term), and
the total transportation costs (the third term). Accordingly, kE(N,U)
is the economy’s aggregate expenditure function.

Recalling that each individual is endowed with Y units of the
composite good, the complex’s material balance of the composite
good requires that

E(N,U) — NY < 0. (13)

Y+ cn(H)] dx+z ZC(J

X|21+1
/ (X)ti([x — xi5])dx (12)
Xi2j-1

m;

i
j=1

In other words, the complex’s aggregate expenditure must equal the
complex’s aggregate supply of the composite good.

The above set of Egs. (1)-(13) defines the constraints of a feasi-
ble spatial resource allocation for the whole economy. Necessary
conditions for a Pareto optimal allocation are given in the next
section.

3. The optimal solution

The necessary conditions for a Pareto optimal allocation in
which all individuals in the economy have the same utility level
are obtained by maximizing the common utility level, U, subject
to the constraints (1)-(13).!> The Lagrangian and the formal deriva-
tion of the first-order conditions are specified in Appendix 8.1 in the
Web Appendixes. When solving the model, we assume for simplicity
that the variable k, which is the number of complexes in the econ-
omy, is a real variable and not an integer. By making this assump-
tion, we disregard the factual indivisibility of complexes and allow
a fraction of an optimal complex in the solution.!® The conditions
in this section are necessary for a single complex. In our economy
there are k such complexes. We also assume that the complex con-
figuration, (my,...,my), is a given vector of I integers. Therefore, the
necessary conditions below are for a local optimum. Additional con-
ditions for a global optimum, in which the optimal complex config-
uration is determined as well, follow in a subsequent section, after
the local optimum is discussed.

The necessary conditions below are also sufficient for a (local)
maximum. Since the constraints in our model are formulated as
inequalities and due to the conditions on the model functions as

15 The same Pareto optimal solution can be obtained by a planner maximizing the
social utility function which is obtained by adding all the utility functions of all the
individuals in the economy; i.e., maximum f(’;L WZX),HX), Gy - dx sub-
ject to constraints (1)-(13) except for (5) which becomes redundant

16 If k is not an integer, there must be a fraction of a complex in the solution.
Obviously, an actual allocation contains only complete complexes, which is the case
for an integer k. Thus, in the optimal solution with a non-integer k, each complex is
either smaller or larger than the optimal complex of the solution with an integer k,
and the utility level for integer k is not higher than for real k. The distortion is
negligible for a real but relatively large k. The problem of indivisibilities of economic
entities is quite common in the economic literature (e.g. the indivisibility of the firm).
In our case the problem might be more severe since k is likely to be relatively small.
Thus, the subject of indivisibility of optimal complexes deserves a separate study.

lj x))

specified in the previous section, the feasible set is compact. Con-
sequently, a solution of the model that satisfies the necessary con-
ditions exists and cannot be a minimum. However, when non-
convexities are involved, there may be corner solutions with multi-
ple local optima. Scale economies are such non-convexities and
therefore where scale economies are involved a solution includes
spatial corner solutions, i.e., separate facilities where a CG is con-
sumed and to which consumers commute in order to use the CG
(the alternative internal solution is that the CG is consumed by
each household at home). When the complex configuration’s en-
tries are fixed and given, an allocation that satisfies the necessary
conditions exists for all the functions that fulfill the requirements
specified in the previous section. Note that since housing is an
essential good, in every solution there must be occupied land. Even
for a fixed configuration we cannot rule out the possibility of sev-
eral local optima due to the non-convexities and it may happen
that more than one of these local optima also has the maximum
utility level. In such a case the optimum is not unique.

In Section 5.5, we discuss aspects of global optimum solutions
and how the feasible set of functions that constitute the functions
domain of the fixed-configuration-model is divided into subsets for
which only one basic configuration is in the global optimum. We
also discuss the global optimum in which the distribution of CGs
is at home as a private good and not in facilities.

The equations in this section are calculated from the necessary
conditions derived in Appendix 8.1 in the Web Appendixes. These
equations are easier to interpret than the original ones and still
constitute a full set of necessary conditions for a Pareto optimal
complex, equivalent in every way to the original conditions de-
rived in the Appendix.

3.1. Households and housing

3.1.1. Housing construction

In (9), Py(x) is defined as the quotient uy(x)/u;(x). A necessary
condition for the efficient allocation given in (14) below states that
the marginal cost of housing construction, c;(H*(x)), equals Py(x), i.e.,

Pu(x)(= u2 (%) /1 (%)) = c4(H' (x)),  x, (14)

where H¥(x) is the amount of housing constructed per unit land at x
and ¢}, (H*(x)) is the marginal cost of construction at location x. It fol-
lows from (14) that Py(x) is indeed the housing price function. Ob-
serve that we can solve Eq. (14) to obtain H’(Py(x)).

3.1.2. Rent function

The rent at x, R(x), is defined in (15) below as the difference be-
tween the revenue and the cost of construction per unit of land at
x. Thus,

R(X) & Py () HE (Pa(X)) — ca(H' (Pa(X))), V. (15)

The properties of the rent function are given in Appendix A. Note
that even though in general housing price functions and rent func-
tions are competitive equilibrium tools, they are well defined in this
optimization model. These functions have the same properties as in
an equilibrium model since housing and land have no external ef-
fects associated with them in the optimum.

Taking the integral of the rent function over the entire country
yields ALR, the aggregate land rent in the economy, i.e.,

oL
ALR =k / R(x)dx. (16)
0

Note that the right-hand side of the ALR equation consists of the
aggregate land rents in a complex multiplied by the number of com-
plexes in the economy.
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3.1.3. The optimal ‘budget constraint’

Let ji(x) be the index of the facility of club i to which a household
residing at x travels. We define Tr(x) as the travel and usage expen-
diture of a household residing at x, commuting to facilities ji(x)

located at x;,; oy paying commuting costs t;(|x — X;,;.,[) and con-
gestion tolls, CZ(]( ), fori=1,...,I. Thus,
I
DY [cz(] )+ (1%~ X, >|)} (17)

i=1

Note that Tr(x) is a continuous and differentiable function of x
everywhere except at the facility locations, X, 5y where Tr(x) is
continuous but not differentiable.

The following Eq. (18), the household’s optimal ‘budget constraint’
at x, is a necessary condition for Pareto optimum.'” The congestion
tolls included in Tr(x) are what distinguish the necessary condition
below from an equilibrium budget constraint. We also define in
(18) the household’s optimal expenditure function at X,
ePn(%), G i+ G Tr(%),U), in short e(x).

Y+v:z(ph(x)7c1‘j‘(x) GIJ( )erh( )h(ph(x)vcu‘(x)a---7GIJI(X)vU)
+Tr(X) Ze(Py(X),Gy iy G Tr(%),U), V. (18)

We can see that in (18), px(x) indeed serves as the housing price,
and the household’s income Y+ v is independent of location and
consists of the initial endowment of an individual household, Y, plus
v, an equal share of total alternative-shadow-land-rents in the econ-
omy.'® Thus, a household behaves in the optimum as a utility max-
imizer who considers as given: his income; the location x;; of all
facilities (i,j); the quantities of CGs, Gy, in these facilities; and the

def act G Nij)
)=

congestion tolls ¢ (j 2Ny the household is required to pay

when it uses facility i, j. Each club ie(1,...,I) has m; facilities spread
throughout the complex and a household at x visits one facility of
each club i.

3.2. Clubs

The external effects in the model are concentrated in clubs and
therefore most of the equations in this section are not equilibrium
relations.

3.2.1. Samuelson’s rule

The necessary condition in (19) below determines Gj, the opti-
mal amount of CG for facility j in club i. The equation is a version of
Samuelson’s well-known rule about public goods.

/ 1.2j+1 |:ui+2 n:| dx — le (j)7 Vi,j, (19)

1

where ¢ (j) = 06 . On the right-hand side of (19) is the marginal

rate of substltutlon in production between the CG and the compos-
ite good and on the left-hand side is the sum of the marginal rates of
substitution in consumption of the users of facility i, j.°

17 Note that if i=1 is a production club, then the expression (—c}) is the marginal
product of labor which attains positive values and appears as income in the
household’s optimal budget constraint. In this case, the model has a non-zero solution
even if Y vanishes.

'8 Namely, v = "4, where R4 > 0 and if kL < . then R, = 0. See also (25), (26) and
the discussion that follows at the end of Section 3.

19 For club 1, the production club, after substituting u3 = 0 in (19) reads 0 = cl(j). To
understand the meaning of (19) when i=1, consider the production function
Gy — c'(j) in perfect competition. Then the product and production factor are both
the composite good whose price is 1. The profit maximization condition in
competition is an equality between the value of the marginal product of the
productlon factor G, and the product price, i.e., oc (G1j —c'(j)) = 1 which implies
that 0 = ¢l (j), i.e,, (19) for i = 1. Thus, in the case of the production club, the necessary
condition (19) is simply the condition for profit maximization in perfect competition.

3.2.2. Optimal facility location

The optimal facility location, x;5j, should satisfy the necessary
condition in (20) below, which is also a necessary condition for
the facility location to minimize aggregate transportation costs of
patrons to facility (i,j).

Xi2j Xi2j+1
/ n(x)ti (x5 — x)dx = / nx)ti(x — x;5)dx, Vij. (20)
Xi2j1 Xi2j

In (20) the aggregate marginal transportation costs of patrons on
one side of a facility equal the aggregate marginal transportation
costs on the other side, so that a marginal shift in the facility loca-
tion does not change aggregate transportation costs to the facility. It
should be noted that linear t; in (20) implies that on each side of the
facility reside an equal number of patrons. The following lemma can
now be proved:

Lemma 1. A club’s facility location is an interior point of the club’s
market area, and therefore of the complex. The market area of a
facility is in a bounded segment of the complex.

The proof of the first part of the lemma follows directly from
(20) which requires that patrons should reside on both sides of
the facility location. The proof of the second part of the lemma fol-
lows from the finiteness of the household’s income which allows it
to travel only a bounded distance.

3.3. Bid price functions and nodes

Bid price functions of housing and land are essentially tools of
competitive equilibrium analysis. They can be employed in our
optimization model since the land and housing markets are free
from external effects. The bid price functions below are defined
for given facility locations and the CGs in them, and for a given
optimal utility level. The crucial assumption which allows bid
function analysis is the assumption of a household’s freedom to
choose its location of residency which implies an equal utility level
to identical households everywhere. This assumption is indeed
part of this model as well as part of other urban competitive mod-
els. For a proof that bid housing price function analysis is compat-
ible with the necessary conditions of this optimization model, see
Appendixes 8.1.1 and 8.1.2 in the Web Appendixes. By nodes we
refer to facility locations and boundaries.

3.3.1. Bid housing price functions

Let Tr(x,j',...,j'") be the sum of the home-facility commuting
costs plus the congestion tolls ¢}, (ji) a household residing at x pays
when traveling to each of the I facilities, j!,...,j!, as specified in
(18), where j' is the index of facility j of club i, i.e., j' € (1,. ,m,-).

The facility j' is located at x; ,j» With a given quantity of CG, Gl i L.

Trixg o )

27

b + tillx = x,54]) (21)

vxjandist, 0<x<L, je(,....m), i=1,.. .1

N

For the household to reside at x and travel to the given I facilities (j'),
the household’s optimal budget constraint must fulfill,

Y +v=2z(py(x), (Gijf) ,U) + pa(X)h(py (), (Gijf), U) + Ty(x, ().

(22)
where (G;) = (Gyj1,--, Gp)i () = (.- -.J); 2(a(%), (Gy), U) s the
compensated demand function for the composite good Z, defined
in (11) and h(p,(x), (G;;),U) is the compensated demand function

for housing H, defined in (10).
The vector ((G,.j.), (ii), U) is fixed and given and so is the house-

hold’s income Y + ¢. The only variable remaining to be determined
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at a given location x is the price of housing, px(x). By substituting
out pp(x) from (22) we obtain the bid housing-pice of a household

residing at x and traveling to facilities at (xi_zj,-) where the household
uses the CGs, (GU..). We designate this bid housing price function

by pﬁ(x,j', . ,j'). What distinguishes one bid housing price func-
tion from another is the set of facilities to which the household
travels. Income and utility levels are the same for everybody every-
where and are known parameters as are the CGs and facility loca-
tions. Therefore, once the facilities’ indices of a bid housing price
function are known, all information is revealed. Each bid housing
price function has a different set of I facilities. In each of two differ-
ent sets of indices there is at least one facility that the other lacks.
For some vectors (j'), there may be locations x for which pj, substi-
tuted out of (22), is negative. In such cases, we set the bid housing
price equal to zero. We can now prove the following lemma.

Lemma 2. The bid housing price function is a continuous function of
the distance x and twice differentiable, with a positive second
derivative everywhere except at the I facility locations (xi_zj.,-) where
it is continuous but not differentiable.?°

A household at location x, by choosing to travel to facilities that
yield the highest bid housing price is actually choosing to attain the
utility level at location x by spending the least of all possible costs
other than the cost of housing. Such behavior by all households
leads to an efficient allocation. In competitive markets, a household
at x travels to the facilities that yield the highest bid housing price
at x, because he then can outbid others competing for housing at x.
Accordingly, py(x), the housing price function at x, fulfills

vx where j' € (1,...,m;),i=1,...,1 (23)

The vector of indexes of facilities (j!(x),...,j'(x)) to which a house-
hold residing in x travels to is merely the vector G1,....j") that max-
imizes pi(x,(j')) in (23). Thus, the housing price function is the
upper envelope curve of all bid housing price functions as defined
in (23) and besides being the housing price function it also deter-
mines the facility locations to which a household at x travels.

3.3.2. Bid rent functions
We define the bid rent functions as

R(x.j',....J") = pb(x.j,. ..,j’)HS(pg(x,jl,...,j’))
- G(H (P )

The bid rent is a monotonic increasing function of p? (x,j',....j) and
fulfills R®(p? = 0) = 0. Therefore, in most cases we can use either the
bid rent function or the bid price function.

3.3.3. Boundaries and facility locations

In the optimal allocation a node x; on the x-axis is a boundary
point between club-i market areas, if there are points x; and x,,
X < Xp < X;, such that all residents living in (x,,x,) consume the ith
CG in a facility to the left of x;, and all residents in (x,,x,) consume
the ith CG in a facility to the right of x,.

Let x;, be a boundary point of clubs iy,. . .,ix, 1 < K < Iand of them
only (when K =1, x;, is the boundary of the complex). For brevity of
notation we also designate by K the set (ix,k=1,...,K)and by I — K,
the set ((ix ¢ K) and (i, € (1,...,I))). There is a point x;,x; < Xp, (X; can
be any point between x;, and the next boundary point to the left of
Xp) that residents at every point x, x; < x < X, use the I CGs at the same

20 For a proof of Lemma 2 see Appendix A.

facilities. We designate these facilities by j, ..., i.e.j) = ' (x),x <
X < X,.In the same way, there is a point x,, X, > X, where all residents
in the segment x, < x <x, use the I iCGs at the same facilities. In
this segment, if i € K, then jf, + 1 is the facility in which residents
consume the ith CG and ifie [ — K, jf, is still the facility in which
residents of x consume the ith CG. The necessary condition associ-
ated with the boundary x;, now follows:

=pb (x,j}),..., f,), forx, s.t.x; <x<xp,

palo)=maxpies’..1)3 = pt (x. (1, +1.5ieK) U (1, ie (1-K))).

J
forx,s.t.x, <x<x:

andph(xb) :pg <Xb7j3)a~~--,j2)

=} (s (1 +1.vieK) U vie (1K)
(24)

Eq. (24) states that the bid function p? (x; []:) +1,Vie K] U [jf),Vi €

(I'-K))) and the bid function p? (x;j;,...,]'f)) intersect at x, and

are equal to the housing price there. Hence, each of the two bid
functions must coincide with the housing price function not just
in xp, but in a neighborhood of x, as well. Note that the lowest
two lines in (24) are the actual necessary condition. Below, x; is in-
dexed according to the rules set up in Section 2.

Xo =X g T T X ik
For the proof that (24) is compatible with the necessary conditions,
see Appendix 8.1.2 in the Web Appendixes.

The location of facility j of club i in our model is a node located
at x;»;. The transportation cost function, t(| X — X;2;), is a continu-
ous and differentiable function of x everywhere except at x = X;;
where it is not differentiable. Since Tr(x)in (21) contains sums of
transportation cost functions, it is continuous and twice differen-
tiable everywhere except at facility locations where it is continu-
ous but not differentiable. This property is passed on to p2 solved
from (22) and (23) (see Lemma 2). Since pp(x), the housing price
function, consists of segments of bid housing price functions that
intersect at boundaries, it must be continuous and twice differen-
tiable too except at facility locations and boundaries where it is
continuous but not differentiable. To sum up the analysis, we write

it in the form of a Proposition.

Proposition 1. The housing price function, Pp(x), is a continuous and
twice differentiable function of x with a positive second derivative
everywhere, except in nodes where it is continuous but not
differentiable.

Consecutive facilities of the same club may hold different quan-
tities of the CG. Hence, households residing on different sides of a
clubs’ boundary may consume different quantities of one or more
CGs (depending on whether the boundary is of one or more clubs
and whether consecutive facilities have different quantities of their
CG). With discontinuous changes in quantities of CGs consumed in
consecutive facilities, discontinuous changes in households’ con-
sumption of housing and the composite good may be observed as
well when crossing a clubs’ boundary. In the following proposition
we prove that this is not the case with housing and if two house-
holds live at the same location they consume the same amount
of housing regardless of where they use the CG. This is stated for-
mally in the following Proposition:

Proposition 2. The household’s housing consumption, H(x), is con-
tinuous everywhere, including in boundary and facility locations. Also
continuous everywhere are the density of population, n(x), and the
supply of housing, H’(x).
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It should be noted that unlike the continuity of the supply and
demand of housing, the household consumption of the composite
good, as well as its CGs’ consumption may be discontinuous in
boundaries. For details and proof of the proposition, see Appen-
dixes 8.1.1 and 8.1.2 in the Web Appendixes.

3.3.4. Market areas

In Section 2, we assumed that a market area served by a facility
is a connected segment of the x-axis. Thus far we have used this
assumption only for simplifying the notation. Now we prove this
assumption endogenously in Lemma 3 for clubs with linear trans-
portation cost functions.

Lemma 3. The market area of a club with linear transportation cost
function is a connected segment of the x-axis.

For a proof, see Appendix 8.2.1 in the Web Appendixes and
Fig. 5. Lemma 1 and Lemma 3 yield the next Proposition:

Proposition 3. The market area of a club’s facility is a bounded area
and the facility is located in its interior. Market areas of clubs with a
linear transportation cost function are compact.

Recall that in this study we investigate only allocations in which
market areas are connected.

3.4. The Henry George rule

The alternative land rent, Ry, is the land rent at the boundaries of
a complex, i.e., R4=R(L). R4 is the lowest land rent anywhere in the
complex. A necessary condition for Pareto optimum of an economy
with identical households is the following relation:

R

(25)

where vis the household’s income from its share of alternative land
rents (see also (18)). The Kunn-Tucker conditions imply that if
L<?=Ri=v=0andwhenlL=2= v,Ry, > 0.

The last necessary condition for an optimum is the Henry
George rule,

L
DIR = /0 (R() — Ry =

1 m;
i=1 j=

(¢'() = Nic3(4)), (26)
1
The term fé(R(x) —Ry)dx > 0, is the differential land rents (DLR).
Since the DLR on the left-hand side of (26) is positive, so is the

term on the right-hand side of the equation, i.e., the aggregate

provision cost, ZL] ZJ’E] c'(j), minus the aggregate congestion tolls,

zﬁzlz}’;’lNﬁcg (j) (see also (17) and (18)). This means that congestion
tolls cannot be the sole source of financing the clubs’ operations. In
(26) the DLR exactly equals the remaining deficit of the clubs after
congestion tolls are paid to the clubs.?! Therefore, the only net profits
in the economy are the alternative land rents. It follows from (25)
that in the optimum the overall profits in the economy, if any (i.e.,
if R4 > 0), are distributed among the general population.

4. Decentralization

In this section we deviate from the analysis of agglomeration to
discuss briefly the issue of implementation of the optimal alloca-

21 In the case of the industrial club, the term (—Nj jc} (j) > 0) is the wages paid to the
workers in the facility and (—c(j)) > 0 is the value added over the value of the input of
the composite good, Gy;. Therefore, ¢! (j) — Ny;c}(j) > 0 is the deficit of the production
club’s facility. Thus, each facility has to receive a subsidy from the local government
that can be financed by an optimal taxation of land rents. This result is well-known in
the literature.

tion. The problem is that on the one hand, in a laissez faire alloca-
tion each facility owner possesses market power and if left to his
own devices he will engage in spatial monopolistic competition
(of the type discussed in Beckmann (1999)), the outcome of which
is usually inefficient. On the other hand, a full involvement of a lo-
cal government in the production and distribution of CGs is likely
to become inefficiently managed. One reason for this possible mis-
management is that no real and clear cut goal faces a government-
appointed manager of a facility. Another reason is the lack of
incentive of such a manager to operate the facility efficiently.

Alocal government (of a complex) possesses a better option forits
clubs’ management than either complete lack of intervention and
allowing aregeme of laissez faire or by full government intervention.
This option being the decentralization of the optimal allocation by a
local government partial intervention in local market operations
that is limited to the use of only transfer payments (i.e., taxes and
subsidies) and spatial regulations (e.g., zoning). The purpose of this
decentralization is that the city attains the desired efficient alloca-
tion or comes close to it. The general theory of decentralization fol-
lows from “The Second Fundamental Theorem of Welfare Theory”
(e.g., see Mas-Colell et al. (1995), Chapter 16, Proposition 16.D.1)
which proves that it is possible in general to decentralize a Pareto
optimal allocation. It is shown in Mas-Colell et al. (1995) that every
Pareto optimal allocation (x",y") (his notation) has a price vector
p=(p1,...,pr) # 0, such that (x',y’,p) is a price quasi-equilibrium
with transfers. In other words, in a sufficiently well-behaved econ-
omy with price-taking agents, prices and income transfers exist that
yield the optimal solution as a market allocation. Furthermore, in
Hochman and Ofek (1979) it is argued that by performing decentral-
ization a local government can improve its tax-base and income.
Actually, the local government knows that an action it takes is in
the right direction and that its policy is correct if in return, the city’s
land rents plus government net (i.e., the increase in tax income
minus expenditure on the action taken) income increase.

In the case of non-spatial clubs, an efficient equilibrium exists
that does not require any government intervention (e.g., see the
outset in Hochman et al. (1995)). However, in the case of spatial
clubs, a government intervention is needed to instigate the provi-
sion of optimal quantities of CGs at the optimal nodes. In Hochman
et al. (1995) we have concluded that decentralization is impossible
and a full government involvement is needed. Below, however, it is
shown that decentralization is possible and is essentially imple-
mented by local governments in real-life situations.

We first investigate cases in which club operators can locate facil-
ities only in predetermined sites matching the optimal facility loca-
tions. We discuss this restriction and partially relax it later on. There
is no unique way to decentralize our optimum and for different
clubs, different methods may be suitable. A natural way to decen-
tralize our optimum is to allow each facility operator to charge each
user the congestion toll ¢} (j), which ensures the fulfillment of (18).
The facility’s income from user-charges is N;c} (j) and, in general, this
toll is not sufficient to cover the full cost of running an optimal facil-
ity. Afacility’s loss is ¢(j) — N;c, (j) > 0and the local government has
to provide the missing funds to coverit.?? The Henry George Rule (26)
ensures that the differential land rents, which are taxable by the local
government, are sufficient to cover the total deficit.

The above decentralization method, in which facility operators
charge patrons with congestion tolls and are subsidized by the

22 Not all club facilities in a complex must suffer losses and some of them may have
profits. However, the overall combined costs of all the clubs in the complex are always
higher than the overall congestion tolls. To see that consider the following Henry
George rule (see also (26)),0 < DLR = [¢ (R(X) — Ra)dx = Zlezjf"z‘l (c'(j) — Nyich (j)). The
double summation in the equation is positive although it may contain some individual
negative terms of facilities whose congestion tolls exceed their expenses. Such facilities
need to be taxed instead of subsidized.
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local government, suffers from the fact that facility operators have
little incentive to behave efficiently. By doing nothing and acquir-
ing a government subsidy, a facility operator obtains the subsidy as
positive profits, while by behaving optimally the best he can do is
end up without losses (see Hochman et al. (1995)). Another prob-
lem with this method is that the government may have a knowl-
edge about the combined performence and needs of all the clubs
in the complex but it lacks the knowledge of the needs of individ-
ual clubs and how to divide the taxed DLR between them.

Despite these drawbacks there are circumstances in which the
decentralization by subsidizing a facility can be used. Consider,
for example, the case in which the provision costs are divided into
costs of constructing a facility (fixed costs) and non-decreasing
marginal costs of operations. In such a case, the government can
construct the facility, thus paying the fixed costs, and then lease
the facility to a private operator who is allowed to charge users
the marginal cost while maintaining current operations and paying
the variable costs. Knight (1924) showed that for a road system
there are circumstances in which profit maximizing user-charges
are equal to optimal congestion tolls. Indeed, if the facility operator
incurs positive profits, the government can obtain these profits as
lease payments and redistribute them back to households. Most
toll roads currently operate according to this principle.

Another decentralization method is applicable in general to all
cases including those in which division to fixed and non-decreasing
marginal costs are not relevant. We let an asterisk designate optimal
values of variables and p‘éil_ be the price a household pays per unit of

defc(
- N

G;i it consumes at facility (i,j), where pdG 4(%NI) 23 [ o the price,

Pg,» be the price the facility ij operator receives per unit of CG he pro-

vides, which is pG = N,]pG =c (GU N,]) . All agents are now price tak-
ers since they have to accept the government’s dictated price. Under
this condition, G; is the amount of CG that maximizes the facility
operator’s profits and Nj; is the number of patrons that visit the facil-
ity. Note that in this case the facility has positive profits since,
Doy, = ci (GUNU>GU > (G,]Nu> where both ¢} and ¢, are positive
(see Section 2). Finally, let S(x) be a government subsidy to a house-

hold located at x, S(x)& Y, C) e (G* N, )

i N i) T m2\ Ui if
where the summation is over all the clubs which a household at x
uses. This subsidy compensates households for those charges which
are higher than the congestion tolls. The government can finance this
subsidy by taxing the facilities’ profits and differential land rents. We
can now prove the following Proposition,

Proposition 4. The price vector (pG e ,p;(x)), the household’s
subsidy function S(x), the model setup in Section 2 for a given basic
configuration and the optimal facility locations constitute a price
quasi-equilibrium with transfers that yield the model’s Pareto optimal
allocation.

For the proof, see Appendix 8.3.1 in the Web Appendixes. Note
that in this decentralization method, facility operators are price
takers and customers pursue the least expensive facility which ful-
fills their needs.

If all facilities of a club are the same, i.e., they all have the same
number of patrons and the same amount of CG, the subsidies to a

23 The price pG is not equal to the household’s marginal rate of substitution
between the CG and the composite good. It is, therefore, not really a (Lindahl) price
but more a lumpsum tax. However, a price-taking individual will consume the correct
optimal CG since this is the quantity provided by the closest facility and it is the
better option of CG consumption compared to other facilities of the same type. This
lumpsum is preferred over Lindhal pricing since it is the same for all users of a facility.

household are identical everywhere. However, if there are clubs
with three or more facilities in a complex, some of them may have
different number of patrons than others. In this case the subsidies
required to compensate households become location-dependent
and may be different in different neighborhoods. In practice, local
governments do not bother to return income that they tax from
club to the particular users of the clubs and instead they add this
tax income to the general municipal income and reduce the tax
burden of the general population. See Hochman and Ofek (1979)
for a theory on actual local government behavior.2* Changing tax
bases may cause deadweight losses (see Hochman (1990)), however,
these inefficiencies might still be the best option.

So far we have assumed that club managers face predetermined
facility locations in a complex, which, to the most extent, resem-
bles real life. Club sizes and locations are detailed in city master
plans, their number is regulated and each club requires a permit.
As such, no decentralization of the choice of facilities locations
(i.e., creating conditions in which club operators will choose the
efficient facility locations) is really required. The fact that in real-
life decentralization of the choice of facility locations does not take
place is a clear indication of the complexity of such a process.

In what follows, however, we investigate the decentralization of
locating facilities, since it may be applicable to some clubs that de-
liver home their CG (e.g., the electricity and water utilities, fire fight-
ing). The optimal facility location is the one that minimizes overall
commuting costs from the market area, i.e., (20) has to be fulfilled.
If households are left to pay for their own commuting, the facility
operators will choose facility locations that maximize their patron-
age and profits and disregard the effect the facility location has on
commuting costs. This may lead operators to locate their facilities
inefficiently. For example, if in a complex there are two facilities
of the same club, both of them will locate in the center of the com-
plex, each trying to add to its market area the more densely popu-
lated areas in the center of the complex while relinquishing
sparsely populated areas closer to the complex boundary. To induce
facility managers to locate efficiently, their goal function should in-
clude the minimization of their patrons’ total commuting costs, so
that (20) is satisfied. To achieve this goal, each facility operator
should transport his patrons by himself, in return for a predeter-
mined lump sum payment. The lump sum should be the same to
all residents living on the same side of the facility and equal to the
commuting costs of an individual living at the boundary of the mar-
ket area. With this method of payment, a facility manager has an
incentive to choose a facility location that minimizes overall trans-
portation costs, since then he will be maximizing his profits from
transportation. Indeed, a first-order condition for such a minimiza-
tion is (20). At the same time, the local government should tax the
additional profits of the facility owner and redistribute them among
the club’s patrons so that the lump sum transportation payment of a
household minus the transport subsidy it receives equals the house-
hold’s actual transportation costs. In this case, the redistributed
amounts vary from one location to another even within the market
area of the same facility and even if all facilities are the same. Be-
sides impossible income redistribution and the unrealistic assump-
tion of price-taking agents, which by themselves render this type of

24 Retail stores are facilities of a club that have another method of financing its
operations. Stores provide the service of distributing consumption goods to the
general public. They buy goods from producers at gross prices and sell them at higher
retail prices. Stores differ from each other in the type of goods they sell, the quality of
products and services, prices, accessibility, etc. In practice, although retail stores are
very competitive, they do not behave as price-takers and the method by which
customers pay for their services is not applicable to Proposition 4. Yet the allocation
of stores could be optimal if the government would tax stores profits and refund
buyers for excess payment. In real life, taxes on stores are high but the direct
refunding of buyers is practically impossible and the income from these becomes part
of the government’s general budget.
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decentralization unpractical, it also suffers from the inherent prob-
lem that the facility operator can only acquire monetary travel costs.
Costs involving the value of travel time must be borne by the indi-
viduals themselves and since in the decentralized method the facil-
ity operator only minimizes monitary commuting costs, he does not
locate the facility optimally. In view of these shortcomings of this
decentralized method, it would seem that the determination of po-
tential facility locations should be left to city planners.

Nonetheless, in clubs where the CG is delivered home like util-
ities, no travel time of patrons is involved and the above method of
choosing facility locations can be used in practise. If this decentral-
ized method is used then the added delivery costs that households
residing closer to the facility pay should be returned to the payees
in one way or another. Otherwise, if all households regardless of
their residential location pay the same price for the delivered
CGs (e.g., water, electricity) than the incentive of households to
concentrate around the facilities will be impaired.

The last remaining issue of decentralization is how can a local
government know which of its actions actually improve efficiency
and which reduce it. Furthermore, what is the incentive of the local
government to act efficiently? The answer is that any action of tax-
ation, regulation and provision of collective goods and services im-
prove efficiency if total government net (minus expenses) income
plus the differential land rents in the city increase due to the ac-
tion. This is also the incentive of the local government to be effi-
cient, since total resources available to the municipality (tax-
base) then increase. For further details see Hochman and Ofek
(1979). It should be noted that only the basic industry in a city,
which we termed here as ‘the production club’, should be subsi-
dized by the local government (see footnote 12 above as well as
Hochman (1981, 1990, 1997)). All other enterprises that provide
goods and services to the local population (termed here ‘clubs’)
constitute sources of income to the municipality.

5. Agglomeration of spatial clubs and concentration of
households

In this section we investigate agglomerations of spatial clubs
and concentration of households in optimal allocations. We first
describe a few general characteristics of the optimal solution and
discuss briefly general effects of congestion and commuting costs.
Then we elaborate on allocations of two simple basic configura-
tions, each of which characterizes a particular type of club agglom-
eration. The first deals with perfect agglomeration of facilities of
different clubs and the second involves imperfect agglomeration
of facilities. We give an example in which perfect agglomeration
of facilities in the center of a complex is a global optimum. We then
extend these results and show that these two types of agglomera-
tions apply to other configurations as well. We conclude the sec-
tion by showing that a variety of global optima can be attained.

As a reminder, a complex configuration is a vector with I integer
components m; whose GCD is one. Each m; designates the number
of facilities of club i in a complex. The variable k measures the
number of complexes in the economy.

5.1. General characteristics

In a ring-shaped economy that is partially unoccupied, even if
we assume that the occupied land constitutes a single connected
segment (0,L),0 < L(=kL) < &, and all the unoccupied land is
the segment (L,.#), there are two edges to the occupied land:
L(=kL) and O(= ).%° Since all CGs are essential, these two edges

25 If the occupied land is not connected, there are more than just two edges to the
economy, a fact that strengthens our arguments.

must be boundary points to all clubs, i.e., the origin, O, is the left
boundary of the first market area of each club and L is the right
boundary point of the last market area of each club.

We first show that an agglomeration of clubs in an economy
with a uniform population distribution is ineffective. In an edge-
less economy an agglomeration is ineffective if besides the alloca-
tion with the agglomeration there is also an infinite number of
other allocations, all equivalent to the one with the agglomera-
tion, i.e., they all have the same utility level and the same con-
sumption baskets as the allocation with the agglomeration, but
all of them are without an agglomeration of facilities. An ineffec-
tive agglomeration in an economy with edges is an agglomeration
in an allocation, possibly a unique and optimal one, that becomes
an ineffetive agglomeration when the economy is turned into an
edgeless one.

Consider the following example of an allocation of I clubs in an
economy with two edges (i.e.,, O < L(=kL) < #) and a homoge-
nous population distribution. All the different clubs in the econ-
omy have the same number of identical market areas and each
club’s facility is located in the center of the club’s market area,
i.e., m;=1, Vi, and the number of complexes, k, is also the total
number of facilities of each club. Since the extreme two boundaries
of every club coincide, it follows that all market areas are common
to all clubs and the facilities of all I clubs are jointly located in the
center of each of the joint market areas. In other words, facilities of
all clubs agglomerate in a single location at the center of each
complex.

In this example, since the population is uniformly distributed
over space, all households consume the same amount of housing
and the quantity of CG in each of the facilities of a club must be
the same for the utility of all households to be identical. Suppose
that all households have the same resources and utility level,
hence, all households must also consume the same amount of
composite good in order to have the same utility level. In short,
in the economy just constructed, all households have the same
utility level and consume identical bundles of housing, composite
good and CGs. In addition, market areas are common to all I clubs
and in the center of each market area facilities of all I clubs are
agglomerated.

Suppose now that the unocupied segment in the economy is
eliminated so that kL(= L) = O(= ). Then the economy no longer
has edges. In this edgeless economy, the previous allocation of
clubs with common market areas and agglomerations of facilities
of the I clubs still exists, but the last boundary of the last market
area of each club coincides with the first boundary of the first
market area of each club as well as with the first and last bound-
aries of all other clubs. However, in this edgeless economy, unlike
the economy with edges, there are no points that must be a
boundary to all types of clubs (that the edges of the economy
were). Actually, a club in the edgeless economy is free to have
its boundaries anywhere as long as the distance between two
consecutive boundaries of the same club are constant and equal
to L. Therefore, all clubs can be arbitrarily arranged in a consecu-
tive order and the location of boundaries and hence of facilities of
different clubs, can be arranged so that the distance of a facility of
one club from the next consecutive club’s facility is L/I. The sizes
of a club market areas remain unchanged as in the allocation with
agglomerations, the location of each facility remains in the mid-
dle of its market area and the quantity of CG in each facility re-
mains as is. Furthermore, households remain where they are so
that the population density remains uniform. The result of such
an allocation is, first of all, that it has no agglomeration of facili-
ties; in fact, the facilities are distributed evenly throughout the
ring. Secondly, since the market areas are the same in the two
allocations and the distribution of population is uniform, the
number of patrons and travel distances in each market area
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remain the same as in the economy with edges. Consequently,
total commuting costs in each facility of each club are unchanged
as well as total provision costs. It follows that each household
consumes the same basket as before and therefore has the same
utility level, but this time there is no agglomeration of facilities.
As a matter of fact, in the edgeless economy there is an infinite
number of allocations with the same utility level and all without
an agglomeration of facilities.2®

The above example implies that an allocation with an agglomer-
ation of facilities of different clubs in an edgeless economy con-
strained to a uniform population distribution is just one of an
infinite number of equivalent allocations, all with the same con-
sumption bundle and utility level but without an agglomeration of
clubs. This, in turn, implies that the agglomeration of facilities of dif-
ferent clubs in an economy with a uniform population distribution
do not contribute to welfare and is therefore, an ineffective agglom-
eration. The fact thatin the above example of an economy with edges
thereis a unique optimal allocation and that facilities agglomerate in
itis entirely due to the economy’s edges and to the technical coinci-
dence that all clubs have market areas of the same size.

Therefore, in order to avoid confounding the main issues of this
paper and to concentrate on essentials, from here on we restrict
our analysis to solutions of the model that satisfy the following
Condition A:

Condition A. In an optimal allocation investigated here:

(i) The number of complexes, k, is an integer.
(ii) There is no vacant land in the economy, i.e., L(= kL) = ¥ and
R4 > 0, where R4 is the shadow rent at a complex boundary.

Part (i) of Condition A is intended to avoid the problem of indi-
visibility of optimal complexes by dealing only with population
sizes that are integer multiplications of an optimal complex size.
In that we follow Hochman et al. (1995). Part (ii) is intended to
achieve an edgeless economy to avoid the ‘edge-of-the-economy’
effect. Under Condition A, for every area . of the economy we
have a lower bound of .47, A7(%), such that every .4 fulfilling Con-
dition A, also fulfills 4" > A4°(%). Then, L(= kL) = Z.

We attribute the term central location pattern (CLP) to a club’s
location pattern in which every market area is common to all clubs,
and facilities of all clubs are located in the center of the joint mar-
ket area. Thus, in the above example, the initial location pattern
with agglomeration of facilities of all I clubs is a CLP.

We now introduce a new virtual tool, which we term a ‘rotation’
of a club. This tool is useful in an edgeless, ring-shaped, uniform
density economy and we use it in the proof of the next Proposition.

Definition. Let a rotation of club i be a shift to the right of all the
nodes of club i by the same distance while keeping the population
and the nodes of the rest of the clubs unmoved.

Club i nodes are all the boundaries and facility locations of club i
and they all shift in a rotation of club i. The locations of nodes of
clubs other than i remain constant in a rotation of club i. as do
the quantities of CGs in the facilities of all clubs, including those
of club i. This rotation maintains constant distances between club
i nodes and keeps the locations of households unchanged.

26 If in the model the quantity of housing consumed is fixed and not included in the

utility function (e.g., as in Mohring’s early urban model) then the outcome of utility
maximization is that the population is distributed uniformly and the resulting
allocation is an efficient competitive equilibrium. An agglomeration of facilities in
such an allocation is therefore efficient, competitive and ineffective. When the
allocation is second best because it is constrained to a uniform population
distribution and housing is in the utility function, then an agglomeration of facilities
is both ineffective and inefficient.

We now return to the first-best allocation to prove the follow-
ing proposition:

Proposition 5. In a first-best allocation of a club economy the
population density is never uniform, i.e., there are segments of the
economy in which n(x)=."/ £.%

We prove the proposition by showing that a contradiction oc-
curs when assuming a homogeneous population distribution in
an optimal allocation. This contradiction is obtained when clubs
are rotated so that all of them have a facility at the same agglom-
eration point. At this agglomeration point, the density of popula-
tion must be at its maximum and decline gradually as the
distance to the agglomeration point increases. This contradicts
the homogeneity assumption. For a detailed proof, see Appendix
8.4.1 in the Web Appendixes.

Another property of an optimal solution in a spatial club econ-
omy is that to a set of necessary conditions there is always a sym-
metric allocation that fulfills these conditions, where the
symmetry is with respect to the center of the complex.?® Each
configuration has a spatial symmetric structure of its own. In a sym-
metric structure, if m; is an odd number of club i facilities, the club
has a facility j,j = mT’l that is located in the middle of the complex,
with its market area spread symmetrically around the facility. The
remaining m; — 1 facilities of club i, where, m; — 1 is an even num-
ber, are arranged consecutively and are located symmetrically with
respect to the center of the complex, so that each facility has its
mirror image facility on the other side of the center. Thus, facilities
j and j are two facilities that are symmetric to each other if
_]'+j’ —1=m;

When m; is an even number there is no facility in the center and
instead a boundary is located there. In this case, all the facilities are
symmetrically located around the center so that a facility j is the
mirror image of its symmetric facility j on the other side of the
center and j +j — 1 =m; The population density is also symmetric
around the center of the complex. It should be recalled that in each
basic complex configuration there is at least one club with an odd
m;; otherwise the configuration would have a common divisor
greater than one and would not be basic. Therefore, there is at least
one facility in the center of each complex. In Proposition 6 below
we prove that for a set of necessary conditions there is a symmetric
optimal solution of the complex.

Proposition 6. Given that the model’s functions fulfill the conditions
in Section 2, that the model’s configuration is given and that Condition
A is satisfied, then there is always an optimal complex with a
symmetric structure (as described above) that solves the model.

The intuition behind the above proposition is that if an alloca-
tion is optimal on half of the complex area, its mirror image must
be optimal on the other side of the center since commuting is a
function of only the distance and is therefore symmetric. A detailed
proof is in Appendix 8.4.2 in the Web Appendixes.

In this section we presented Propositions 5 and 6, which state
that a first-best allocation has a population distribution that is

27 When there is at least one transportation cost function whose second derivative is
strictly negative, ie., there is at least one i, s.t, tj <0, we can strengthen the
proposition’s result. Actually, if t;; < 0, there is no segment in the economy in which
the density of population is constant. To see this, consider (B2) in Appendix A, in
which we see that when p;, vanishes at a point x, (i.e., the housing price function is
constant at x, ), pn(X,) is positive. This, in turn, implies that in a segment (x,, X, + €),
where ¢ is small and positive, p, > 0. Thus, if p, =0 at any point, it is positive
immediatly after that point. Because p, = 0 if and only if the gradient of the density
function, n(x), is zero as well, the assertion follows. B

28 However, we do not show that this solution is unique or even that non-symmetric
optimal allocations do not exist.
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never uniform and that a first best always has a symmetric
allocation that solves it. In the next section, we discuss the effects
of congestion and transportation costs on the solution to the
model.

5.1.1. Congestion and commuting effects

We discuss here briefly the effects of congestion and transpor-
tation costs on the efficient way to provide a CG to households.
We first note that if there are no scale economies in the provision
cost function of a CG, i.e., ¢(G,N) = Nc(G, 1), then the CG is a private
good to be provided to each household at home and not in a facil-
ity. The cost of providing the CG at home is Nc(G,1) and it is equal
to ¢(G,N), which is the cost of providing the CG at a facility. How-
ever, in a facility there are also commuting costs, which are saved
by providing the CG at home. If the CG is a pure public good, i.e.,
c(G,N) =c(G,1), then commuting costs are the only reason for hav-
ing more than one facility for the distribution of the CG. Because an
added household to a facility’s existing patrons must reside farther
from the facility than all the other patrons, the accumulated com-
muting costs to a facility are a function increasing at an increasing
rate of the facility’s patronage.® Thus, although direct provision
costs are not affected by the number of households using the facility,
the overall costs of providing the CG, which include transportation
costs, are increasing at an increasing rate, so much so that at a cer-
tain distance from a facility it pays to construct an additional facility
rather than to increase the existing one. Actually, sufficiently high
commuting costs relative to direct provision costs can make it
worthwhile to supply even a pure LPG at home rather than at a
facility.

From the above discussion, it follows that both increasing
congestion in a facility and/or increasing commuting costs to it
reduce patronage in each of the two cases and increase the num-
ber of facilities in a complex. There are, however, some differ-
ences between these two effects. For example, a high degree of
congestability and relatively low commuting costs will yield
facilities with similar sizes in both densely populated areas and
sparsely populated areas. The difference between these two
types of areas is the number of facilities per unit land that is
higher in denser areas. Alternatively, when the degree of conges-
tion is low and transportation costs are high, facilities’ patronage
in densely populated areas is much higher than in sparsely pop-
ulated areas but the number of facilities per unit land is not so
much different.

The congestion and transportation costs discussed above affect
mainly the global optimum solution and when the configuration
is fixed they affect only the size of the complex. Accordingly, if
the CGs are highly congestable or transportation costs are high,
then the whole complex becomes relatively small. Conversely,
low congestion and low transportation costs yield a larger com-
plex size.

In the following sections, we further characterize symmetric
solutions of the model, essentially by identifying the relative loca-
tions of facilities and by typifying the housing price function and
with it the density function. The question we face is whether
agglomerations of facilities of various clubs actually take place in
an optimal allocation. To answer this question, we characterize
two optimal symmetric allocations, each of which having a differ-
ent, simple configuration. We show that the concentration of
households and agglomeration of facilities occur in an edgeless
economy.

29 Note that the positive first-order derivative of the transportation cost function
with respect to distance is responsible for the second order derivative of the
accumulated transportation costs in a facility as a function of the facility’s patronage
being positive.

5.2. Perfect agglomeration

We first characterize the solution of the model with the config-
—

uration (1,...,1). This solution results in a type of facility agglom-
eration that we term perfect. A second type of facility
agglomeration that we encounter in the next section, we term
imperfect. It turns out that these two types exhaust all types of
agglomerations and can help us characterize solutions of the model
in general, as we do in Section 5.4.

The term perfect agglomeration refers to an agglomeration of
facilities of different clubs located at the same point.° An alloca-
tion with a central location pattern (CLP) in which all the facilities
in a complex are located in the center of the complex is an example
of perfect agglomeration. In what follows, we show that our model

1

with the configuration (1,...,1) has an optimal solution with a
CLP that satisfies the necessary conditions specified in Section 3.
From Proposition 6 we know that all the facilities in a CLP allocation
are located in the center of a symmetric complex. We designate the
optimal values of variables of the model with the configuration
—

(1,...,1) by the superscript c. In the Proposition below we investi-
gate properties of the model’s solution.

Proposition 7. An optimal allocation of a spatial club economy that
/—LH

satisfies Condition A with the configuration (1,...,1) consists of k
symmetric complexes. Each of these complexes has a CLP in which
facilities of all clubs are located in the center and the population is
distributed symmetrically around the complex center. The population
density function and the price of housing function are both symmet-
rical around the complex’s center, and are continuous and differen-
tiable everywhere except at the nodes where both functions are
continuous but not differentiable. Both the density function and the
housing price function are declining with the distance from the center
and the housing price function has also a positive second derivative.

For a detailed proof, see Appendix 8.4.3 in the Web Appendices.
In the proof we show that there is an allocation with a CLP, a den-
sity function and a housing price function that satisfy the neces-
sary conditions for an optimum and possess the properties
mentioned in the Proposition above.

Corollary 8. In an optimal allocation with a CLP, the agglomeration of
facilities of different clubs in the center of each complex is accompa-
nied by a concentration of households around the center.

The proof follows directly from Proposition 7.
The housing price function of a CLP in an optimal complex is de-
picted in Fig. 3.

Definition. An optimal allocation of our model (set up in Section 2)
with a given set of functions and the basic configuration M is a
global optimum if any optimal allocation of the model with the
same functions but with a basic configuration other than M, has a
lower utility level.

In the example below we present a set of functions that satisfies
additional specifications to the model’s general functions introduced
in Section 2. In this more specific set of functions the allocation with
the CLP of Proposition 7 together with the complex configuration
(1,...,1) is the global optimum solution of our model whose func-
tions fulfill the additional specifications in the example below.

3% In a model where facilities occupy space, perfect agglomeration means that the
areas occupied by the facilities are adjacent to each other with no households in
between them.
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The Housing Price Function

Py(L)

0 X, L

Fig. 3. The housing price function of an optimal complex with the configuration
(1,...,1).

Example 1. Function specifications for a global perfect agglomer-
ation in a CLP

Consider a model of an economy with spatial clubs, which in
addition to the conditions on the functions set in Section 2, satisfies
the following more specific conditions:

1. The utility function is of the form u = U(H,Z,\/(G,. . .,G;)), where
Y(Gy,...,Gy) is invariant for permutations of the set (Gy,...,G)),
e.g., ¥(Gi,...,G) =[G

2. All clubs share the same transportation cost function, i.e.,
t{y)=t(y), Vi, and the same provision cost function, i.e.,
c(G,N) = ¢(G,N), VG, N.

Lemma 4. An optimal CLP allocation as described in Proposition 7 is a
global optimum solution to the model with functions from the above
example.

The Lemma’s proof is intuitively straightforward; for a formal
proof, see Appendix 8.4.4 in the Web Appendixes.

It should be noted that a marginal change in the number of facil-
ities in a complex is impossible and the smallest change is of one
more (or less) facility. Therefore, sufficiently small variations in
the specifications of the functions would leave the basic configura-
tion of the global optimum intact. For example, if instead of using
the utility function u = H-Z'HL] G; in the example, we would
use the utility function u=H-Z-[[,_,G} "™, where |o]| are suffi-
ciently small yet different from each other, the global optimum
allocation would still be a CLP. The same is true for small variations
in the transportation cost functions of the different clubs or small
differences in their provision cost functions. However, while the ba-
sic configuration of the global optimum may not change due to
small variations, all other variables change continuously.

5.3. Imperfect agglomeration

Here we characterize the optimal allocation of the model with
the basic configuration given below:
m=1vi=1,....Lum=2Vi=L+1,...)); 1<h<I<c.

(27)
Perfect agglomeration, which has been investigated in the previous
Section, is the agglomeration of facilities of different clubs in a sin-
gle location (in the CLP the agglomeration of facilities at the center
of the complex is of all the clubs). In imperfect agglomeration that is

investigated here, facilities of different clubs share the same market
area and agglomerate in a cluster in which facilities are close to
each other but they are not necessaryly located at the same point.
Thus, by imperfect we mean that the clusters may contain dwell-
ings between the facilities. In addition, each cluster of facilities in
a market area gravitates towards the center of the complex but
steers clear of it. We say the cluster gravitates when it is closer to
the boundary of its market area nearest the center of the complex
than to the other boundary.

We first introduce the symmetric structure of the allocation
with the configuration given in (27) as specified in Proposition 6.
The symmetric structure possesses the following properties: (1)
Each of the clubsi € 1,...,I;, (henceforth SF clubs) have one facility
located in the middle of the complex and its market area is the
whole complex, and (2) the two facilities of each of the clubs
ie(l;+1,...,I) (henceforth DF clubs), are symmetrically located
on each side of the center of the complex and each of their market
areas is extended between a complex boundary and the center.
Altogether, the complex has I; facilities of SF clubs and 2(I — I;)
facilities of DF clubs, of which (I —I;) are sitting on each side of
the complex center. The properties of the allocation with the con-
figuration (27) are described by the series of lemmas presented in
the rest of this section. Since all complexes are the same, we deal
with a single representative complex that occupies the segment
(0,L), namely, the first complex after the origin in the clockwise
direction.

Lemma 5. In the optimal allocation of the model with the configu-
ration (27) discussed above, all the facility locations of the DF clubs are
in the second and third quarters of the complex length.3! The average
density of the population residing between the two facilities of the DF
club that is farthest from the center (one facility to the left and one to
the right of the center) is higher than it is between these two DF facilities
and the boundaries.

For the proof of the Lemma, see Appendix 8.4.5 in the Web
Appendixes.

In what follows, we show that all the DF clubs agglomerate in
two clusters, one in the second quarter of the complex and the
other in the third. Let x, designate the facility location of the
DF club in (0,L/2), which is located closest to L/2, and let x, be
the location of the closest facility to the origin. In the Lemma
above, we proved that L/4 <X, <X <L/2. It follows that all
the facilities of the DF clubs in the first half of the complex are
located between X, (<L/2)and x» (>L/4) and are clustered together
closely in the second quarter of the complex (and consequently,
the DF clubs in the second half of the complex are clustered in
the third quarter of the complex). We term such close groupings
of facility locations a cluster of DF facilities. In the lemma above,
we showed that such clusters of DF clubs are located closer to
the center of the complex than to the boundaries. In such cases,
we say that the DF clusters gravitate towards the center of the
complex.

To clarify the role of transportation costs in an imperfect
agglomeration of DF clubs, consider the following Lemma:

Lemma 6. In an allocation with the basic configuration specified in
(27), different DF clubs with proportional transportation cost func-
tions share the same facility locations.>?

31 By the term “quarter” we refer to a segment which results from a division of the
complex’s length into four equal consecutive segments. The first quarter is the
segment farthest to the left and the other three quarters are numbered consecutively
in the clockwise direction.

32 Recall that in our model if two facilities of different club types share the same
location, it means that they are adjacent to each other with no residential area
between them.
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Fig. 4. The housing price function in a complex with the configuration (2,1).

Proof. Suppose that i and i are two clubs with proportional trans-
portation costs, i.e., tj(x)/ty (X) = oy, Vx, where a;;, the factor of pro-
portionality, is constant. Then the proportionality is retained by the
derivatives as well as by the functions and tj(x) = o t; (). Thus, if
(20) holds for club i, it holds for its proportional club i at the same
facility location as well. To see this consider (20) for club i, in which
we substitute oy t; (x) for tj(x) and then eliminate the proportional-
ity factor o;; from the equation to obtain (20) for club i at the same
facility location as club i.l

Note that all linear transportation cost functions are propor-
tional and therefore DF clubs with linear transportation cost func-
tions agglomerate perfectly at a single location. If transportation
cost functions of various DF clubs are non-linear and non-propor-
tional, then different DF clubs have facilities grouped in a cluster
but in separated locations.

Fig. 4 depicts the housing price function in an optimal complex
with the configuration (1,2).

We can now summarize the analysis performed in this section
in the following Proposition;

Proposition 9. In an optimal allocation with the basic configuration
specified in (27)

(i) Facilities of SF clubs in the complex, i.e., of clubsie (1,...,1;),
are all perfectly agglomerated in the center of the complex.

(ii) Facilities of DF clubs, i.e., of clubsie (I; +1,...,1), agglomerate
imperfectly in clusters that gravitate towards the center of the
complex, i.e., the clusters agglomerate in the second and third
quarters of the complex.

(iii) Average density of population between the clusters of the DF
clubs is higher than the average density between these clusters
and the boundaries of the complex.

(iv) If, in a cluster, two DF clubs have proportional transportation
cost functions, they share the same facility location.

It should be noted that although in Fig. 4 the housing price func-
tion peaks in the middle of the complex where facilities of clubs
with odd number of facilities agglomerate perfectly, in general this
may not be the case. If commuting costs to the clubs in the com-
plex center are relatively low and so is their number, then there
may not be a peak in the housing price function at the center. It fol-
lows that the lower is the housing price function at the center, the

more concentrated and closer to the middle of their market areas
the clusters become.

5.4. Characterizing the general configuration

In this section we extend some of the results of the previous
sections to a model with a general configuration. We first divide
the I clubs of the complex into S groups. Each group contains clubs
that have the same number of facilities in the complex. Without
loss of generality we assume that the indexes of clubs in the same
group are adjacent to each other in the complex configuration, as it
is in (28).

ky ks s
— —
(ml,...,ml,...,m57...,m5>, where stzl

s=1

and mg=m, if s#k, Vs, ke (1,...,S), 1<S<L (28)

In (28), the first group of clubs has k; clubs, each having m; facilities,
the second group has k, clubs each with m; facilities and so on up to
group S in which there are ks clubs, each having ms facilities. Note
that the indexing of m, the number of facilities of a club in a complex
is changed in (28) and now obtains the group index instead of the
individual club’s index. In the previous notation of the complex con-
figuration the index i of m; is the club’s place in the configuration
while in (28) it is the group’s place. Thus, while the notation in the
i, _
configuration (1,...,1) is m; =--- =m; =1, in the notation of (28) it
is S=1, ki(=ks) =1 and m;(=ms) = 1. The configuration presented by
(27) in the notation of (28) is described by S=2, k;=1; and
ko(=ks) =1 — I;, m; = 1 and my(=mys) = 2. Note that any basic configu-
ration can be presented by the notation of (28). For example, con-
sider the configuration (1,2,3,4,5), which is a basic configuration
since the GCD of its entries is one. In this configuration there are five
clubs in a complex (i.e., I =5): in club 1 there is one facility per com-
plex (i.e.,, m; = 1), in club 2 there are two facilities per complex (i.e.,
m; =2) and so on up to club 5, which has five facilities per complex
(ie, ms=5). In (28), S=I=5 ki=---=ks(=ks)=1,
my=1,my =2,...,ms(=ms) = 5. The general configuration (28) may
be described as consisting of S pairs of indexes (ks, m;).
We can now formulate the Proposition below,

Proposition 10. Consider a complex with the general configuration
(28). Then (1) for each group of clubs s the area of the complex is
divided into ms market areas, each of which is shared by k; facilities of
the group of clubs s, s=1,...,S. (2) There is always at least one group
of clubs for which mg is an odd number. Each group s, with an odd m;,
must have a middle-facility (i.e., facility mSOT“) that is located in the
middle of the complex (i.e., at xs, m,, +1 shared by all ks, clubs in group
So, NOte that s, is now the index of Xs, m, 1 rather than the index of the
individual club). All the ks middle-facilities of a group with mg an odd
number agglomerate perfectly in the center of the complex and share a
joint market area that is symmetric around the middle of the
complex. It should be noted that all groups of clubs with an odd
number of facilities share the middle of the complex as the location of
their respective middle-facilities, however, each group has a middle
market area with different boundaries. (3) All the facilities of a group
with mg an odd number, which are not middle-facilities (i.e., all
facilities j,j# '"ST“) agglomerate imperfectly in clusters in their
respective joint market areas. (4) Clubs of a group with m; an even
number have no middle-facility and at the center of the complex is
located the boundary j = ms + 1 at X m,.1, which separates the market
areas of facilities 5= and 5= + 1 of all k clubs of group s. Facilities of a
group of an even mg agglomerate imperfectly in clusters in their joint
market areas. (5) Clubs of group s that have commuting costs
proportional to each other agglomerate perfectly at one point in each
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of their joint market areas. (6) Each cluster of agglomerated facilities
(perfectly or imperfectly) in segments where the rent function is
monotonously increasing towards the center of the complex, gravitates
away from the center of its market area and towards the center of the
complex. (7) Let s be the index of the group with the lowest number of
facilities that is larger than one, (i.e., m=min(mg; Vms > 2))
and m = m§.33 Then the average density of population between the
two clusters of group s at the edges of the complex (the closest to the
complex’s boundaries) is higher than the average density between each
of these two clusters and each with its closest boundary of the complex.

The above Proposition includes extensions of assertions per-

taining to the configurations (1,. ’ ,1) and (27). The Proposition
is proved by showing that the locational patterns specified fulfill
the necessary conditions. The proofs follow the same lines as those
in the previous sections. For further details on the proof, see
Appendix 8.5.1 in the Web Appendixes.

An interesting Corollary follows below:

Corollary 11. If in the configuration (28) the quotient ms/my > 1 is
an integer, then the market areas of group s clubs are each divided
into ms/my market areas of group s clubs so that each of the my sets of
ms/mg market areas of group s are fully imbedded in one market area
of group s', where by fully imbedded we mean that ms/my market
areas of group s fit exactly into a single market area of group s, fully
covering it without any spillover.

To clarify the Corollary consider the following example in which

ky ky ks

—— ——
the club configurationis | 1,...,1,2,...,2,6,...,6 |. The complex

as a whole is the market area of the k; facilities of group 1 clubs
that have one facility per club (i.e., m; = 1). The complex is then di-
vided into two symmetric market areas each with k; facilities of
group 2 clubs (i.e., mp = 2). Then each market area of group two
is divided into three market areas, each containing ks facilities of
of group 3 clubs (i.e., m3 = 6). Note that the only requirement from
the number of clubs in a group, k; is that it is a positive integer.

We now turn to discuss briefly how to attain global optimum
solutions.

5.5. Global optimum

So far we concentrated on optimal allocations with predeter-
mined configurations which we referred to as local optima. One
exception, however, is the example in Section 5.2, where we con-
structed a domain of functions for which the configuration
r—i\—\

(1,...,1) is part of the global optimum. In order to obtain addi-

tional domains of functions with which other configurations are

part of a global optimum, we start from the domain in which the
/—Lh

configuration (1,...,1) is part of the global optimum and change

a single parameter in a single function until we obtain a function

for which a different configuration is in the global optimum.

To demonstrate, we begin with the commuting cost function for
a facility of club 2, i.e., t;(y), where y is the distance between the
household’s home and the facility to which it travels. We multiply
t>(y) by o to obtain at,(y) as the commuting cost function of club 2.
For o = 1, the commuting costs are unchanged. We now increase o
gradually and with it the commuting costs until eventually a
threshold o4,1 <o <co is reached, at which point it pays to
construct an additional facility of type 2 in order to shorten

33 je., mis not defined for the configuration (1,...,1). For(1,...,1,2,...,2),m = 2 and

for (1,3,6), m=3 and s=2.

commuting distances. However, adding just one more facility
may not be the global optimum since the population distribution
changes as well when we add a facility. Therefore, it is possible that
the optimum optimorum involves more than just one additional
club 2 facility. Actually, when the number of club 2 facilities
changes, the global optimum may also involve one more (or less)
facility of other clubs as well in which nothing is changed. By
continuing to increase o beyond o4, we go through a series of
a-thresholds, each of which with its global optimum that involves
additional facilities of club 2 in the complex (possibly changes in
the number of other clubs as well). For sufficiently large «, a
threshold is reached in which commuting costs for club 2 are so
high that it is worthwhile to provide club 2’s CG to households at
their homes as a private good. At first, for relatively low o, possibly
only to households at sparsly populated areas, and at densely
populated areas club facilities still exist. A further increase of o
to its final threshold causes all the population to get their CG of
club 2 at home as a private good.

The above process can be repeated for all transportation cost
functions. A similar process can be used for the provision cost func-
tions and for each of the CGs in the utility function. By performing
these processes we obtain a variety of configurations in global op-
tima. Note, however, that not all possible configurations are neces-
sarily global optima solutions. At this stage, it seems that to
actually obtain global optimum solutions and characterize them,
simulation models have to be used.

6. Summary and concluding remarks

The purpose of this paper was to characterize optimal alloca-
tions of an economy with spatial clubs and to investigate the con-
centration of households around facilities and the agglomerations
of club facilities in centers. We also investigated ways to decen-
tralize the optimal allocation. Our results showed that each local
optimum could be decentralized, sometimes in more than one
way. One method of decentralization involved both taxation and
regulation and could be applied to most clubs and it seemed to
have similarities with real-life practises. Our main findings were
that a primary agglomeration of club goods into facilities occurred
due to scale economies in the provision of CGs and that it led to a
secondary concentration of population, which, in turn, led to a
tertiary agglomeration of facilities of different clubs in centers.
The three types of agglomerations occurred simultaneously and
their ordering is due to causality not timing. Furthermore, we
showed that an optimal allocation would never have a uniform
population distribution and neither would an allocation with a
uniform distribution of population have an effective agglomera-
tion of facilities. We also compared between the effects that travel
time and congestion had on the number and sizes of facilities as
well as on complex size.

We characterized in detail two types of facility agglomerations,
each with a specific complex configuration, one termed perfect
agglomeration and the other imperfect agglomeration. In the perfect
agglomeration, facilities of different clubs agglomerated perfectly
in the center of the complex, where they were adjacent to each
other without residential activity between them. In the imperfect
agglomeration facilities of different types of clubs agglomerated
imperfectly in clusters symmetrically located around the center
of the complex but away from it. The clusters may had households
residing between facilities if transportation costs to different clubs
were not proportional. Although these clusters were located away
from the center of the complex, each of them was drawn away
from the center of its market area and towards the center of the
complex. We then argued that these two kinds of facility agglom-
erations also typify agglomerations in general.
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The global optimum we investigated was the solution to the
model with functions specified in the example in Section 5.2 and
the configuration (1,...,1) was part of this global solution. We
showed a way to obtain function domains to other global optima
with complex configurations different from (1,...,1), by making
changes in one of the cost functions (transportation or provision).

One avenue for future research could focus on the relation be-
tween certain costs and utility function, and their global optimal
configuration. Such a research may shed light on questions like
what functions would result in a hierarchy of clubs or what causes
facilities of certain types of clubs to be imbedded in facilities of
other club types. At these stage it seems that such questions can
be resolved only by running computer simulations.

Appendix A. Characterizing the bid housing price and other
related functions (for publication)

The following differentiation of the bid housing price function
proves Lemma 2. Differentiating (22) with respect to distance,
bearing in mind that no facility is located in x, yields the Muthian
spatial equilibrium condition,>*

J'I)JrTT(XJ] i) =0
I
= (% — X, )sign(x — X, ;). (B1)

i=1

hx, pﬁ)bﬁ(xyjl, -

where Tr(x,j

A dot above a function designates differentiation with respect to x.
The reader should bear in mind that according to our assumptions,
() =% > 0.and ¢/(y) = £ < 0.

Eq. (Bl) implies that a marginal displacement at a given loca-
tion causes a marginal change in the bid housing price function
proportional to the sum of all marginal changes in the home-facil-
ity commuting costs to the facilities of clubs ji,...,j;. The factor of
proportionality is —1/h(x|p2(x)), i.e., minus the reciprocal of the
amount of housing consumed by a household at x, provided p?(x)
is the price of housing. Note that since tj(|y|) is not differentiable
at y=0, at the facility locations, x;;, p2(x/(j')) is continuous but
not differentiable. For an x that is not a facility location, the second
derivative of the bid housing price is obtained by differentiating
(B1) with respect to distance. Thus

t (1% — Xi25])
)
Consequently, (B2) implies that pt(x) is a concave function of x.
Since the housing price function, py(x), at a location x that is not
a node coincides with one of the bid rent functions, it has all the
properties of a bid housing price function, except at boundaries
and facility locations where it is continuous but not differentiable.

We now turn to other continuous functions that depend on pp(x).
By differentiating (14) we obtain

dH* 1 dH’ . . dH’

—=— > 0= H =——p; =sign(pn) —If B3
dpy ~ () dp, Pr = S1&n(Pn) - 1Pl (B3)

o)+

- h
h

p > 0. (B2)

=T~

Eq. (B3) implies that the supply of housing at a given location is an
increasing function of its product’s price there, and that 5 has the
same sign as py.

The density function, n(p,) = H(pn(x))/h(pn(x)) (defined as the
number of households per unit of land) increases with the price
of housing. To see this, we make the following differentiation:

- 1,forx>0
34 The function sign(x) is given by sign(x) = { 0 for x =0
{ —1forx<0
differentiable everywhere except at x=0. Furthermore, |x|=x-sign(x) and
0|x|[ox = sign(x), except atr x = 0, where it is not defined.

. The function sign(x) is

on(x) d(H'/h) hoH’/op, — H'0h/op,
dp, dpy h’

The sign of (B4) follows from (B3) and the substitution effect [oh(-)/

Opn(-)]au=0 < 0 in (10). From (B4) it follows that the density n(x) =

H*(x)/h(x) increases with distance the same way that py(x) does.

By differentiating the land rent function in (15) and using (B1)
as well as (14), we obtain that

R(x) = H (X)Pn(X)- (B5)

which implies that R(x) varies with distance in the same way that
pr(x) does. By differentiating R(x), we obtain that

R(x) = H°py, + Hpy, > 0. (B6)

> 0. (B4)

Together, Eqgs. (B6) and (B2) imply that in the general case R, like pj,
is a concave function of x.

The functions p}(x) and px(x) are also functions of the parame-
ters U, Y and Gj;. By differentiation of (18) as well as (5), with re-
spect to Y, taking into account that only variables controlled by
the consumer may be indirectly affected, namely H(x) and Z(x),
we obtain that

opn(x) _ 1
oY "R > 0. (B7)
In the same way we obtain for G;; that
opp(x 1 U
P 5 T 0 e M <X <. (88)

Web Appendices. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jue.2010.07.004.
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